Cetyl alcohol
Phân loại:
Thành phần khác
Mô tả:
Cetyl Alcohol là gì?
Cetyl Alcohol là một loại alcohol béo tự nhiên được chiết xuất từ thực vật, có công thức hóa học CH3 (CH2) 15OH. Ở điều kiện thường, Cetyl Alcohol tồn tại ở dạng sáp tinh thể trắng và được coi là chất nhũ hóa thay thế cho Emulsifying wax hoặc Polawax nhờ đặc tính làm dày. Cetyl Alcohol được ứng dụng khá rộng rãi trong đời sống hàng ngày cũng như trong cách ngành công nghiệp chế biến và mỹ phẩm.
Công thức hóa học của Cetyl Alcohol
Cetyl Alcohol có hai dạng cơ bản:
- Dạng tổng hợp: Sản phẩm phụ thu được từ dầu mỏ;
- Dạng tự nhiên: Sản phẩm thu được từ chiết xuất dừa, cọ.
Trong công nghiệp chế biến thực phẩm, Cetyl Alcohol và các loại cồn béo khác được ứng dụng chủ yếu như một chất nhũ hóa. Đặc tính nổi bật của hợp chất này là giữ kết cấu sản phẩm và giữ nhũ tương không tách lớp dầu và chất lỏng. Cetyl Alcohol và các loại cồn béo khác cũng được sử dụng để thay đổi độ dày của sản phẩm lỏng và tăng khả năng tạo bọt hoặc để ổn định bọt.
Đặc biệt đối với phái đẹp, Cetyl Alcohol là hợp chất không còn quá xa lạ khi xuất hiện trong bảng thành phần của nhiều loại mỹ phẩm bởi khả năng cân bằng độ ẩm tự nhiên. Cetyl Alcohol xuất hiện trong các sản phẩm mỹ phẩm như sữa rửa mặt, kem dưỡng ẩm da và tóc, kem chống nắng, dầu gội đầu,… Cetyl Alcohol được Hội đồng chuyên gia đánh giá thành phần mỹ phẩm (CIR) đánh giá là thành phần không gây nhạy cảm, không độc hại và an toàn khi sử dụng trong các sản phẩm mỹ phẩm.
Cetyl Alcohol là thành phần dưỡng ẩm trong nhiều loại mỹ phẩm
Điều chế và sản xuất Cetyl Alcohol
Cetyl Alcohol được sản xuất bởi nhiều phương pháp như ester hoá hoặc hydrogen hóa của các acid béo. Hợp chất này cũng có thể được sản xuất bằng xúc tác hydrogen hóa chất béo trung tính thu được từ dầu dừa hoặc mỡ động vật, sau đó Cetyl Alcohol được tinh kết để ra sản phẩm cuối cùng.
Cơ chế hoạt động của Cetyl Alcohol
Cetyl alcohol có chức năng như một chất hoạt động bề mặt, giúp làm giảm sức căng bề mặt giữa hai chất như hai chất lỏng hoặc chất lỏng và chất rắn.
Ngoài ra, chất hoạt động bề mặt làm giảm và nhũ hóa dầu và chất béo để loại bỏ bụi bẩn do một đầu của phân tử chất hoạt động bề mặt bị hút vào nước thì đầu kia bị hút dầu. Chất hoạt động bề mặt thu hút dầu, bụi bẩn và các tạp chất khác tích tụ trên da vào ban ngày và rửa sạch chúng.
Dược động học:
Dược lực học:
Xem thêm
Butylene Glycol là gì?
Trong các sản phẩm mỹ phẩm, Butylene glycol là một chất lỏng có vai trò giữ độ ẩm và làm dung môi. Butylene glycol sẽ giúp cho kem thấm vào da nhanh hơn, đồng thời cũng giúp làm giảm đáng kể độ nhờn rít trên da sau khi sử dụng.
Butylene glycol có mặt trong công thức nhiều sản phẩm chăm sóc cá nhân, bao gồm dầu gội, dầu xả, kem dưỡng da, mỹ phẩm và nhiều loại khác. Tuy nhiên, Butylene glycol đặc biệt được ưu tiên dùng trong các sản phẩm dạng gel và trang điểm giúp lướt nhẹ nhàng trên khuôn mặt.
Có thể nói, Butylene Glycol là thành phần quan trọng trong công thức mỹ phẩm nhờ tác dụng làm giảm độ nhớt, giúp các thành phần trong sản phẩm có thể dính vào nhau, từ đó các sản phẩm trang điểm và chăm sóc da cũng trở nên lỏng và đồng đều hơn. Ngoài ra, Butylene Glycol cũng được dùng như một chất dưỡng giúp thêm một lớp mềm mại hoặc cải thiện kết cấu cho tóc/da.
Điều chế sản xuất Butylene Glycol
Butylene glycol là một thành phần phổ biến trong mỹ phẩm và các sản phẩm chăm sóc cá nhân, được sử dụng để giữ ẩm, giúp các thành phần không bị vón cục.
Butylene Glycol thường được sản xuất từ nhiên liệu hóa thạch bằng cách sử dụng acetaldehyde, có nguồn gốc từ dầu mỏ và là một chất có thể gây ung thư. Các phương pháp tổng hợp thông thường cũng sử dụng các chất xúc tác kim loại nặng nguy hại cho môi trường và yêu cầu nhiều bước phản ứng, làm tăng chất thải từ quy trình.
Sau đó, công ty Genomatica đã phát triển một phương pháp sản xuất butylene glycol từ quá trình lên men bởi E. coli bằng cách sử dụng đường tái tạo trong quy trình sản xuất một bước. Phương pháp sản xuất này loại bỏ nhu cầu về kim loại nặng và nguyên liệu dầu mỏ như acetaldehyde được sử dụng trong tổng hợp Butylene Glycol thông thường.
Cơ chế hoạt động của Butylene Glycol
Trong sản phẩm, Butylene Glycol hoạt động để thúc đẩy tăng cường khả năng xâm nhập của những thành phần khác. Vì các hoạt chất có trong kem dưỡng thường có kích thước phân tử lớn nên khó có thể thẩm thấu qua da. Trên thực tế, những thành phần có thể thấm qua da rất ít, còn phần lớn thành phần đều tích tụ trên bề mặt. Điều này không hề tốt đối với sự phát triển của da. Butylene Glycol đóng vai trò quan trọng khi giúp tăng cường sự xâm nhập vào da của các thành phần, từ đó nâng hiệu quả tổng thể của sản phẩm lên đáng kể.
Không dừng lại đó, Butylene Glycol còn có khả năng tạo độ mỏng cần thiết cho texture. Nếu bạn bôi lớp kem quá dày sẽ khiến da dễ bị bóng nhờn, gây cảm giác khó chịu. Butylene Glycol được thêm vào trong công thức để giúp khắc phục điều này, giúp da có được cảm giác thoải mái hơn. Mặt khác, Butylene Glycol cũng giúp làm giảm thời gian thẩm thấu của lớp kem trên da, tiết kiệm thời gian hiệu quả.
Ở vai trò là một dung môi, Butylene Glycol hoạt động làm cho những thành phần khác trong công thức được trộn vào nhau đều hơn, kết cấu sản phẩm nhờ đó cũng đồng nhất hơn.
Đặc biệt, Butylene Glycol còn có đặc tính dưỡng ẩm khi có thể hút độ ẩm từ không khí để cung cấp cho da. Điều này sẽ tăng cường khả năng hydrat hiệu quả ở các tế bào da. Chưa dừng lại ở đó, Butylene Glycol còn giúp hạn chế hiệu quả nếp nhăn hình thành trên da.
PPG-10 Methyl Glucose Ether là gì?
Theo thông tin được cung cấp cho Cơ quan Quản lý Thực phẩm và Dược phẩm (FDA) theo ngành trong khuôn khổ Chương trình Đăng ký Mỹ phẩm Tự nguyện (VCRP) vào năm 2011, các este và polyetyl glucoza sau đây đang được sử dụng trong các sản phẩm mỹ phẩm metyl glucoza dioleat, metyl glucoza sesquioleat, metyl glucose sesquistearat, PPG-10 metyl gluco ete, PPG-20 metyl gluc ete, PPG-20 metyl gluco ete distearat, metyl gluceth-10, metyl gluceth-20, PEG-120 metyl glucoza dioleat, PEG-20 metyl glucoza distearate, PEG-20 methyl glucose sesquistearate, và PEG-120 methyl glucose trioleate.
Trong phạm vi bài này, sẽ đề cập đến PPG-10 Methyl Glucose Ether. Nó là một este metyl glucoza propoxyl hóa 100% có nguồn gốc tự nhiên, là một chất lỏng chiết xuất từ đường hoạt động như một chất làm mềm hòa tan trong nước (làm cho làn da của bạn đẹp và mịn màng), chất cố định hương thơm và chất giữ ẩm (giúp da giữ nước) trên da.
Nó tạo ra một cảm giác sang trọng trong dầu gội đầu và các hệ thống chất hoạt động bề mặt khác. Tính dịu nhẹ của nó làm cho nó trở thành một lựa chọn tự nhiên cho các sản phẩm trang điểm được sử dụng quanh mắt hoặc trong các công thức dành cho da nhạy cảm. Nó được khuyến khích sử dụng trong kem dưỡng da, kem, công thức làm sạch, dưỡng tóc, gel tạo kiểu.
Điều chế sản xuất PPG-10 Methyl Glucose Ether
PPG-10 Methyl Glucose Ether có công thức hóa học: trong đó R là hydro hoặc chuỗi polypropylene glycol, với độ dài trung bình là 10 đơn vị lặp lại glycol.

Công thức hóa học cuả PPG-10 Methyl Glucose Ether
Cơ chế hoạt động PPG-10 Methyl Glucose Ether
PPG-10 Methyl Glucose Ether là một loại kem dưỡng ẩm dịu nhẹ, không gây kích ứng có nguồn gốc từ glucose tự nhiên. Nó có thể được trộn với nước, cồn và dầu mỡ, cung cấp khả năng dưỡng ẩm, bôi trơn và làm mềm da thuận lợi.
PPG-10 Methyl Glucose Ether là thành phần được tìm thấy trong các loại kem và chất tẩy rửa giúp làm ẩm da bằng cách thu hút các phân tử nước như nam châm. Về mặt hóa học, chất giữ ẩm là các chất hút ẩm tạo thành liên kết hydro với các phân tử nước. Liên kết này giúp dưỡng ẩm cho da bằng cách rút nước từ các lớp tế bào thấp hơn.
PPG-10 Methyl Glucose Ether làm việc bằng cách kéo nước từ lớp hạ bì (lớp thứ hai của da) đến lớp biểu bì (lớp trên cùng của da).
Quá trình này làm tăng mức độ ẩm trong tầng lớp sừng, lớp tế bào chết bao gồm lớp vỏ ngoài cùng của lớp biểu bì. Bằng cách đó, da sẽ trông ít bị bong tróc và ít bị nứt và nứt.
PPG-10 Methyl Glucose Ether Cũng khuyến khích các tế bào chết, bằng cách phá vỡ các protein giữ các tế bào với nhau. Nếu độ ẩm trên 70%, chất giữ ẩm thậm chí có thể hút hơi nước từ không khí để giúp dưỡng ẩm cho da.
Tên gọi, danh pháp
Tên Tiếng Việt: Na rừng
Tên gọi khác: Nắm cơm, Ngũ vị nam, Dây xưn xe,…
Tên khoa học: Kadsura coccinea (Lem) A. C. Smi (K.chinensis Hance). Ngũ vị – Schisandraceae.
Theo Y học cổ truyền, Na rừng có 2 loại là Na rừng đỏ và Na rừng trắng. Có một vài sự khác biệt nhỏ giữa 2 loại trên.
Na rừng đỏ: Loại quả chín sẽ có màu đỏ, mùi thơm rất đặc trưng, loại quả này có giá trị dược liệu hơn Na rừng trắng.
Na rừng trắng: Khi chín màu vàng nhạt, khe múi hơi đỏ, có giá trị dược liệu ít hơn.
Đặc điểm tự nhiên
Na rừng là cây dây leo, thân cứng, hóa gỗ, màu nâu đen, cành nhẵn. Lá mọc so le, phiến dày, hình bầu dục hoặc hình trứng, dài 10 – 12cm, rộng 4 – 5cm, gốc tròn, đầu nhọn, mặt trên mặt trên màu lục sẫm bóng, mặt dưới nhạt, có nhiều chấm trắng nhỏ.
Hoa khác gốc, mọc đơn độc ở kẽ lá; lá bắc dễ rụng; bao hoa gồm những phiến mập hình trứng, xếp thành 2 – 3 vòng, càng vào trong, phiến càng lớn hơn, màu trắng thơm, điểm vàng nâu ở đầu phiến; hoa đực có nhiều nhị mọc trên một cán ngắn, hoa cái có các lá noãn xếp rất sít nhau. Hoa thường có màu đỏ tím hay vàng.
Quả to, hình cầu, rất giống hình dáng tương tự như quả na nhưng kích thước to gấp đôi hoặc gấp ba lần quả na ta, khi chín màu vàng hoặc đỏ hồng, nhiều múi, múi rất to, dễ tách thành từng múi nhỏ, có mùi thơm nhẹ, ăn được.
Mùa hoa: Tháng 5 – 6, mùa quả: Tháng 8 - 9.
Phân bố, thu hái, chế biến
Loài na rừng phân bố ở vùng nhiệt đới hay nhiệt đới Nam Á và Đông Nam Á. Ở Việt Nam, có 4 loài mọc rải rác ở vùng núi từ 600m đến 1500m, ở các tỉnh Lào Cai, Hà Tây, Cao Bằng, Lạng Sơn… ở phía nam thấy ở Lâm Đồng. Trên thế giới cây phân bố ở một số khu vực núi cao trong vùng có khí hậu nhiệt đới hay á nhiệt đới của Ấn Độ, Lào và Nam Trung Quốc.
Na rừng thuộc loài cây cây leo quăn, thường xanh, ưa khí hậu ẩm mát đặc biệt ở vùng nhiệt đới núi cao. Cây ưa sáng hơi chịu bóng, thường mọc ở ven rừng hay rừng đá vôi. Cây ra hoa quả hàng năm nhưng số lượng hoa quả trên cây không nhiều. Ở vùng rừng quốc gia tam đảo có một khóm na rừng, mọc gần đường đi nên hay bị chặt phá, số cành non nhiều (ước tính dưới 1 năm tuổi) nên không thấy có hoa quả.
Na rừng có thể xếp vào nhóm cây thuốc tương đối hiếm gặp ở Việt Nam, cần chú ý bảo vệ.
Rễ Na rừng có thể thu hái và bào chế thuốc quanh năm.
Sau khi thu hái gốc cây Na rừng, mang về rửa sạch đất cát. Thái thành từng lát mỏng như Kê huyết đằng mang đi phơi nắng đến khi thật khô.
Bộ phận sử dụng
Vỏ rễ vỏ thân thu hái quanh năm, phơi khô.
Rễ và quả là bộ phận dùng làm thuốc của Na rừng.
Octocrylene là gì?
Octocrylene là một hợp chất hữu cơ, dẫn xuất của Benzophenone. Octocrylene tồn tại ở dạng lỏng, sền sệt, không màu, có khả năng tan trong dầu.
Trong mỹ phẩm chăm sóc da, Octocrylene là chất ổn định, đồng thời còn mang lại tác dụng chống nắng. Các nhà sản xuất bổ sung Octocrylene vào công thức sản phẩm chống nắng là nhờ vào khả năng trung hòa, phản xạ tia UV có trong ánh nắng mặt trời của chất này. Từ đó giúp bảo vệ da cũng như hạn chế đến mức thấp nhất các tác hại lên da khi đi ngoài nắng trong thời gian dài.
Ngoài ra, các nhà sản xuất cũng kết hợp Octocrylene cùng với Avobenzone – một chất chống nắng thế hệ cũ và khá không ổn định nhằm mục đích giúp ổn định và tăng cường khả năng chống nắng của Avobenzone.
Như chúng ta đều biết, những thành phần chống nắng hóa học thường kém bền; tuy nhiên, với thành phần chống nắng Octocrylene lại không như thế. Octocrylene chống nắng rất bền (dù hiệu quả chống nắng thấp hơn các thành phần khác) nên nó có tác dụng rất tốt trong việc ổn định và cải thiện mức độ phủ da của các thành phần chống nắng khác. Đó là lý do vì sao có sự kết hợp giữa Octocrylene và Avobenzone để tăng hiệu quả.
Ngoài ra, Octocrylene còn có công dụng của một chất làm mềm, giúp làm tăng khả năng hydrat hóa tế bào. Đây là một ưu điểm của Octocrylene do khi sử dụng mỹ phẩm chứa thành phần sẽ giảm được nguy cơ gây khô da cũng như giảm tỷ lệ kích ứng da.
Một lợi thế khác nữa của hoạt chất Octocrylene là thành phần này có khả năng kết hợp với nhiều loại dầu khác. Chính vì đặc tính này mà Octocrylene được dùng như một chất nhũ hóa, giúp giữ ổn định và hòa trộn những thành phần khác. Đây chính là lý do các sản phẩm chống nắng hóa học có chứa Octocrylene, thường được bổ sung nhiều tác dụng khác.
Nhìn chung, Octocrylene được đánh giá cao đối với việc chăm sóc và bảo vệ làn da người sử dụng. Thành phần này đã được phê duyệt an toàn khi sử dụng trong mỹ phẩm trên phạm vi toàn cầu. Chính vì thế, chúng ta có thể tìm thấy Octocrylene trong các sản phẩm chống nắng cũng như rất dòng sản phẩm chăm sóc da và chăm sóc cá nhân khác.
Cơ chế hoạt động của Octocrylene
Octocrylene hay các thành phần chống nắng khác (oxybenzone, avobenzone, octisalate, homosalate, octinoxate) trong kem chống nắng đều có cơ chế hoạt động giống như một miếng bọt biển, hấp thụ các tia nắng mặt trời. Những loại kem chống nắng này có xu hướng dễ thoa vào da hơn mà không để lại cặn trắng.
Nylon-12 có công thức hóa học [(CH₂) CNH], được tạo ra từ các Monome-Aminolauric hoặc Laurolactam mà mỗi loại có 12 carbons nên có tên là “Nylon-12”.
Nylon-12 là một trong một số polime nylon có mặt phổ biến trong các công thức của kem dưỡng da tay, mỹ phẩm trang điểm, mascara, sơn móng tay… với công dụng chính là giúp tạo bọt, làm trắng cũng như kiểm soát độ nhớt cho sản phẩm.
Nylon-12 có dạng bột, đặc tính không mùi, màu trắng hơi vàng nhẹ, được sử dụng như một vi cầu polime (một dạng cầu nhỏ từ các tiểu đơn vị lặp lại). Nylon-12 có thể dùng thay thế cho chất Talc, mica trong sản phẩm, giúp mang lại cảm giác mềm mại tương tự nhưng không làm bít tắc lỗ chân lông của da.
Nylon-12 có tính trượt lớn, hấp thụ dầu vừa phải, rất ít khả năng gây dị ứng. Kích thước micron của Nylon-12 trung bình 6-9 micron.
Nano Silver là gì?
Nano Silver (nano bạc) là một dạng hạt tồn tại của kim loại bạc, gồm các hạt bạc có kích thước nano khoảng từ 1-100 nanomet (kích thước này mắt thường không nhìn thấy được).
Hạt Nano Silver có tỉ lệ diện tích bề mặt lớn hơn hàng triệu lần so với kim loại bạc, nhờ đó mà tính chất đặc hiệu của bạc được tăng lên đáng kể.
Màu sắc của dung dịch Nano Silver thay đổi từ vàng tới đỏ sẫm và có thể là màu gần như đen khi nồng độ lên tới 5,000 ppm. Lưu ý là các loại bột bán trên thị trường không chứa hạt nano do nano bạc không tồn tại ở thể rắn.
Điều chế sản xuất Nano Silver
Kích thước, hình thái và tính ổn định của các nano silver sẽ khác nhau tùy theo phương pháp được tổng hợp. Có ba phương pháp tổng hợp nano silver chính là tổng hợp vật lý, tổng hợp hóa học và tổng hợp sinh học.
Trong đó, tổng hợp sinh học là phương pháp xanh và thân thiện với môi trường (do quá trình khử không sử dụng enzym tương tự như tổng hợp hóa học nhưng tác nhân khử là vi sinh vật hoặc thực vật). Tuy nhiên, cần thận trọng với phương pháp này vì nó có thể làm lây nhiễm vi khuẩn, đặc biệt là ứng dụng trong y tế.
Cơ chế hoạt động của Nano Silver
Nhờ đặc tính kháng khuẩn của ion bạc và diện tích bề mặt lớn của các hạt nano mà nano silver có khả năng kháng khuẩn mạnh. Tùy theo nồng độ và kích thước mà hiệu quả của các hạt nano bạc sẽ khác nhau, chẳng hạn nồng độ cao sẽ hiệu quả tốt hơn.
Trong khi đó, cơ chế chống nấm nano silver có được là do chúng có thể phá vỡ màng tế bào và ức chế quá trình nảy chồi. Tại nồng độ 0.1mg/lít (tương đương 0.1ppm) nano bạc có khả năng kháng nấm. Với mật độ 105 tb/lít nấm Candida albicans bị vô hiệu hóa hoàn toàn sau 30 phút tiếp xúc.
Cơ chế tác dụng trên virus nhờ khả năng ức chế các giai đoạn phát triển của tế bào virus. Nano bạc được coi là một tác nhân phổ rộng chống lại nhiều chủng virus và không gây đề kháng.
Phytosterols là gì?
Phytosterols (hay STEROL/STANOL thực vật), là thành phần thực vật phổ biến trong thiên nhiên nên nó luôn có mặt trong chế độ ăn uống hằng ngày của con người. Chúng ta có thể tìm thấy Phytosterols chủ yếu trong trái cây, rau, dầu thực vật, ngũ cốc nguyên hạt, đậu nành, nấm, đậu lăng và các loại hạt.
Tồn tại ở dạng tự do hoặc ester hóa, Phytosterols được bổ sung vào thực phẩm để giảm khả năng hấp thụ cholesterol trong ruột dẫn đến giảm cholesterol trong máu. Trong cơ thể, sau khi hấp thụ từ chế độ ăn, Phytosterols được chuyển từ huyết tương sang da. Có thể nói, Phytosterols đóng một vai trò quan trọng trong cấu tạo của lipid bề mặt da.
Phytosterols mang lại nhiều lợi ích đối với sức khỏe làn da. Để làm tăng mức độ Phytosterols trong da, chúng ta không chỉ bôi các sterol trên da mà còn hấp thu qua chế độ ăn uống giàu Phytosterols.
Điều chế sản xuất Phytosterols
Có cấu trúc tương tụ cholesterol nhưng Phytosterols khác với cholesterol trong cấu trúc của dây thẳng. Người ta phân lập Phytosterols từ dầu thực vật, điển hình như dầu đậu nành.
Omega-6 là gì?
Axit Omega-6 là một loại chất béo không no, bao gồm những thành phần Linoleic acid (LA), Gamma linolenic acid (GLA), Dihomo-gamma linolenic acid (DGLA), Arachidonic acid (AA).
Axit Omega-6 là chất béo cần thiết cho các quá trình hoạt động của cơ thể. Cơ thể không thể tự tổng hợp được axit omega-6 mà chúng ta phải bổ sung từ các nguồn thực phẩm giàu hoạt chất này hoặc bổ sung hoạt chất này thông qua thực phẩm chức năng.
Điều chế sản xuất
Acid omega-6 có vai trò quan trọng đối với sức khỏe của chúng ta, nhưng cơ thể chúng ta lại không tự tổng hợp được mà phải dung nạp từ nguồn thức ăn. Omega-6 có nhiều trong các loại dầu động, thực vật.
Các nghiên cứu về nhóm vi khuẩn tía quang hợp (VKTQH) tìm thấy một số chủng VKTQH (loài Rhodovulum sulfidophilum, Rhodobacter sphaeroides) có khả năng tổng hợp được omega-6 đã được phân lập.
Tại Việt Nam đã có rất nhiều nghiên cứu về ứng dụng của nhóm VKTQH không lưu huỳnh trong các lĩnh vực xử lý nước thải, khử sulfide, sản xuất protein đơn bào (SCP), sử dụng làm thức ăn trong nuôi trồng thuỷ sản, thu nhận ubiquinol… Tuy nhiên, nghiên cứu về khả năng tổng hợp các axit béo không no dạng omega-6 nhóm VKTQH còn ít.
Đề tài “Nghiên cứu quy trình công nghệ sản xuất omega-6 từ vi khuẩn tía quang hợp ứng dụng trong công nghiệp thực phẩm và dược phẩm” mã số ĐT.09.17/CNSHCB do TS. Hoàng Thị Yến làm chủ nhiệm, Viện Công nghệ sinh học chủ trì, thuộc Đề án phát triển và ứng dụng công nghệ sinh học trong lĩnh vực công nghiệp chế biến đến năm 2020, đã được Hội đồng nghiệm thu xếp loại đạt.
Cơ chế hoạt động
Axit béo omega-6 được tìm thấy ở nhiều nơi trong cơ thể chúng ta. Omega-6 có thể thực hiện chức năng của tất cả các tế bào. Nếu mọi người không ăn đủ axit béo omega-6, các tế bào sẽ không hoạt động bình thường. Quá nhiều axit béo omega-6 có thể thay đổi cách tế bào phản ứng và có tác động có hại đến các tế bào trong tim và mạch máu.
Potassium Sorbate là gì?
Là muối của sorbic acid, Potassium sorbate (hay Kali sorbate) được hình thành từ phản ứng hóa học giữa sorbic acid và potassium hydroxide.
Potassium sorbate được đánh giá an toàn nhất và hiện được dùng phổ biến nhất trong vai trò là chất bảo quản trong thực phẩm, giúp làm giảm nguy cơ gây bệnh truyền qua thực phẩm mà không ảnh hưởng đến màu sắc hay hương vị.
Bên cạnh đó, trong nhiều loại mỹ phẩm và các sản phẩm chăm sóc cá nhân, Potassium sorbate cũng góp mặt là một chất bảo quản nhẹ, có tác dụng kéo dài thời hạn sử dụng bằng cách ngăn ngừa ô nhiễm vi khuẩn. Các nhà sản xuất thường thay thế Potassium sorbate cho chất paraben.
Khả năng chống nấm, nấm mốc và nấm men của Potassium sorbate rất hiệu quả kém hiệu quả hơn khi chống lại vi khuẩn. Chính vì đặc tính này mà Potassium sorbate không được coi là chất bảo quản phổ rộng. Để đảm bảo các công thức, Potassium sorbate phải được sử dụng cùng với các chất bảo quản khác.
Điều chế sản xuất Potassium sorbate
Người ta trung hòa axit Sorbic với Kali Hydroxit để sản xuất Potassium sorbate ở quy mô công nghiệp. Chất được tổng hợp này hoàn toàn giống với chất có trong tự nhiên về mặt hoạt tính hóa học và kích thước phân tử.
Tồn tại dưới dạng bột tinh thể màu trắng (hạt trắng hoặc dạng viên), Potassium sorbate có thể dễ dàng hòa tan trong nước để chuyển thành axit sorbic dạng hoạt động và có độ pH thấp.
Cơ chế hoạt động của Potassium sorbate
Potassium sorbate hoạt động dựa trên cơ chế ức chế sự phát triển của nấm mốc trong nhiều loại sản phẩm.
Với thành phần cấu tạo có khả năng kháng nấm mốc và các loại nấm men, Potassium sorbate được tham gia vào quá trình bảo vệ, ngăn chặn sự xâm nhập của các loại nấm, vi khuẩn.
Ngoài ra, Potassium sorbate được kết hợp cùng nhiều thành phần bảo quản khác để hạn chế việc hư hỏng trong quá trình sử dụng do tiếp xúc với oxy. Trong quá trình này, Potassium sorbate đóng vai trò là một chất chống oxy hóa vô cùng hiệu quả.
Polymethylsilsesquioxane là gì?
Polymethylsilsesquioxane là một loại nhựa hạt mịn hình cầu bao gồm các hạt rất nhỏ có kích thước từ 4-6 micron. Kích thước hạt nhỏ này giúp nó thuận lợi phân phối trong các công thức để phát huy vai trò trong sản phẩm.
Polymethylsilsesquioxane có thể hòa tan dễ dàng trong Dimethicone 1.5, isododecane, Hydrogenated Polyisobutene… Loại silicone này khá được ưa chuộng trong công thức sản phẩm chăm sóc da và chăm sóc cá nhân do có khả năng hấp thụ bã nhờn, giúp da mịn màng, mượt mà; đồng thời còn tăng cường khả năng chống thấm nước, đặc biệt là với các sản phẩm son môi.
Polymethylsilsesquioxane nói riêng và các loại silicon khác nói chung mặc dù đã được chứng minh là an toàn và hiệu quả cho mục đích thẩm mỹ nhưng nhiều người dùng vẫn lo ngại vì những thông tin không an toàn khi sử dụng tại chỗ. Chúng ta biết là silicon có kích thước phân tử lớn nên sẽ ngăn không cho chúng bị da hấp thụ, như thế sẽ không thể phản ứng với các tế bào của hệ thống miễn dịch, không gây ra dị ứng. Mặt khác, do kích thước lớn mà silicon không thể xâm nhập vào da nên không thể đi qua màng tế bào, một yêu cầu quan trọng để tích lũy sinh học.
Điều chế sản xuất
Polymethylsilsesquioxane là polymer được hình thành từ quá trình thủy phân và ngưng tụ silicon methyltrimethoxysilane. Silicon là các polyme tổng hợp có từ các tiểu đơn vị siloxane (silic nguyên tố và oxy) nên silicones còn được gọi là polysiloxan.
Ptfe là gì?
Danh pháp IUPAC: Poly(1,1,2,2-tetrafluoroethylene).
Tên gọi khác: Teflon, Flourogold, Polytef, Tetraflouroethene homopolymer.
Polytetrafluoroethylene (Ptfe) là một chất fluoropolymer tổng hợp của tetrafluoroethylene.
Polytetrafluoroethylene được Roy J. Plunkett tìm ra vào năm 1938 một cách tình cờ, khi đang làm việc cho DuPont tại New Jersey. Khi Plunkett cố gắng tạo ra một chất làm lạnh chlorofluorocarbon mới, khí tetrafluoroethylene trong chai áp suất của nó ngừng thoát ra trước khi trọng lượng của chai giảm xuống mức báo hiệu "rỗng". Ông phát hiện phía trong chai được phủ một lớp vật liệu trắng như sáp và trơn sau khi cưa cái chai quan sát. Phân tích cho thấy rằng nó đã được polyme hóa perfluoroethylen, với sắt từ bên trong thùng chứa đóng vai trò như một chất xúc tác ở áp suất cao.
Vật liệu mới này đã được cấp bằng sáng chế bởi các chất hóa học động học vào năm 1941 với tên gọi là nhựa flo mới và đăng ký nhãn hiệu Teflon vào năm 1945. Nhanh chóng đến năm 1961, khi chiếc chảo phủ Ptfe đầu tiên do Hoa Kỳ sản xuất được bán trên thị trường tại Hoa Kỳ với tên gọi “The Happy Pan”. Kể từ đó, không có gì ngoa khi nhìn lại, và dụng cụ nấu ăn chống dính đã là một trong những sản phẩm gia dụng phổ biến nhất được sản xuất bởi hàng ngàn nhà sản xuất và có mặt trên toàn thế giới.
Polytetrafluoroethylen là một chất rắn fluorocarbon, vì nó là một polyme trọng lượng phân tử cao bao gồm toàn bộ cacbon và flo. Ptfe kỵ nước bao gồm nước và tất cả các chất có chứa nước đều không làm ướt được Ptfe. Ptfe có một trong số ít chất rắn có hệ số ma sát cực kì thấp.
Công thức hóa học của Ptfe là (C2F4)n. Các đặc tính nổi bật của Ptfe là khả năng chịu nhiệt cao và thấp tuyệt vời, đặc tính cách điện, tính trơ hóa học, hệ số ma sát thấp và không dính trong một phạm vi nhiệt độ rộng lên đến 260 độ C.
Điều chế sản xuất Ptfe
Ptfe được cấu thành từ mạch thẳng của tetrafluoroethylen. Ptfe được điều chế bằng cơ chế trùng hợp gốc tự do trong môi trường nước, thông qua quá trình trùng hợp bổ sung tetraflouoethylen theo một quy trình hàng loạt.
-
Phương trình ròng là: n F2C=CF2 → − (F2C−CF2)n−
-
Vì tetrafluoroethylen có thể phản ứng mạnh tạo thành tetrafluoromethane (CF4) và carbon, nên cần có thiết bị đặc biệt cho quy trình sản xuất để ngăn chặn các điểm nóng có thể xảy ra phản ứng phụ nguy hiểm này. Quá trình này thường được sử dụng với persulfate, persulfate sẽ được đồng nhất để tạo ra các gốc sulfat: [O3SO−OSO3]2− ⇌ 2 SO4 −
-
Polyme cuối cùng được kết thúc bằng các nhóm este sunfate, chúng có thể bị thủy phân và tạo thành các nhóm cuối OH.
Ptfe dạng hạt được sản xuất thông qua quá trình trùng hợp huyền phù, trong đó Ptfe được lơ lửng trong môi trường nước chủ yếu bằng cách khuấy và đôi khi sử dụng chất hoạt động bề mặt như axit perfluorooctanesulfonic (PFOS) hoặc FRD-903 (GenX). Ptfe cũng được tổng hợp thông qua trùng hợp nhũ tương, trong đó chất hoạt động bề mặt là phương tiện chính để giữ Ptfe trong môi trường nước.
Cơ chế hoạt động
Một số đặc tính của Ptfe liên quan đến cơ chế hoạt động như sau:
-
Ptfe là một trong những vật liệu đáng tin cậy nhất về khả năng chống hóa chất. Nó chỉ bị tấn công bởi các kim loại kiềm nóng chảy, các hợp chất halogen hữu cơ như clo triflorua (ClF3) và oxy diflorua (OF2), và khí flo ở nhiệt độ cao.
-
Tính chất cơ học của Ptfe nói chung kém hơn nhựa kỹ thuật ở nhiệt độ phòng. Bổ sung chất làm đầy là chiến lược để khắc phục tình trạng thiếu hụt này.
-
Các đặc tính cơ học của Ptfe có thể bị ảnh hưởng bởi các biến số trong quá trình xử lý như áp suất, nhiệt độ đốt kết, tốc độ làm nguội, ... Ngoài ra, các biến số của polyme có thể ảnh hưởng khá lớn đến tính chất cơ học như khối lượng mol, kích thước hạt, phân bố kích thước hạt…
-
Ptfe có các đặc tính điện tuyệt vời như điện trở cách điện cao, hằng số điện môi cực thấp do cấu trúc đối xứng cao của các đại phân tử.
-
Ở môi trường nhiệt độ dưới 440 độ C Ptfe thể hiện độ ổn định nhiệt cao mà không bị ảnh hưởng đáng kể. Ở môi trường dưới 260 độ C các vật liệu Ptfe có thể được sử dụng một cách liên tục. Ptfe dễ bị tấn công bởi bức xạ, và sự suy thoái trong không khí bắt đầu khi liều lượng từ 0,02 Mrad.
Những đặc tính này đến từ cấu trúc điện tử đặc biệt của nguyên tử flo, liên kết bền vững từ liên kết cộng hóa trị của cacbon với flo, từ tương tác nội phân tử, tương tác liên kết giữa các chuỗi chính và các phân đoạn polyme flo hóa.
Sodium Pyrrolidone Caboxylic Acid là gì?
Sodium Pyrrolidone Caboxylic Acid là dạng muối của axit pyrrolidone carboxylic (hay axit pyroglutamic), cấu trúc hóa học chứa vòng lactam. Năm 1882, nhà hóa học Haitinger lần đầu tiên tìm thấy Sodium Pyrrolidone Caboxylic Acid khi phát hiện ra rằng khi được làm nóng ở 180°C, glutamate được chuyển thành pyroglutamate thông qua việc mất một phân tử nước.
Sodium Pyrrolidone Caboxylic Acid có mặt trong hầu hết tế bào sống, bao gồm cả vi khuẩn cho đến người. PCA có nguồn gốc từ chất chống oxy hóa glutathione thông qua hoạt động của enzyme γ-glutamyl cyclotransferase.
Điều chế sản xuất
Sodium Pyrrolidone Caboxylic Acid thương mại được tạo ra thông qua sự phân hủy protein filaggrin trong tế bào ngô.
Cơ chế hoạt động
Các tế bào da chết (Corneocytes) sẽ tạo nên lớp sừng, lớp ngoài cùng của da đóng vai trò là hàng rào bảo vệ. Trong lớp sừng, Sodium Pyrrolidone Caboxylic Acid cùng những hợp chất nhỏ (đường và chất điện giải) sẽ tạo thành yếu tố giữ ẩm tự nhiên (NMF) cho da.
Cùng với các lipit tự nhiên trong da, các thành phần NMF sẽ giữ bề mặt da được săn chắc, dẻo dai và ngậm nước.
Sản phẩm liên quan